Chameleon Behavior **of** a Crown Host at Molecular Complexation

Summary: The 21-membered hi-concave macrocycle **1** is demonstrated to be a side-specific receptor for MeCN and $MeNO₂$ in the solid state.

Sir: Face differentiation and substrate recognition are central points of many biochemical processes.' Crown complexes are considered **as** very simple mimics of molecular recognition² both in solution³ and in the crystalline state.⁴ However, typical crown ligands, e.g., 18-crown-6,⁵ are equal sided. For that reason, they cannot act **as** face-differing receptors hut form complexes with identical substrate molecules bound to both ring faces.⁴ On the other hand, more sophisticated **ligands4** which could have the opportunity to complex at different faces different molecules use only a single side for binding.⁶

We have recently reported on the selective inclusion complexation of MeNO_2 by a 21-membered tribenzopyridino crown **1** and communicated the crystal structure of the same complex.? Even then it was noticed that MeCN is **also** a suitahle guest to form a crystalline complex with 1, but it is shown to be weaker (decomposes slowly on storage in **air).** Moreover the host/guest ratios differ (1:1 for the MeNO_2 complex but 1:2 for the complex with MeCN). Owing to these facts, a very different host-guest arrangement is suspected for 1.2MeCN. We have now been able to solve the crystal structure of the latter com $plex⁸$ (Figure 1) displaying highly unique behavior of 1 in respect to face differentiation.

In the first instance, the net conformational geometry of 1 is the same in both complexes,⁹ providing the host molecule with **two** concave faces **(cf.** A and B in Figure 1). One (A) has the rough appearance of an ice-cream cone and offers a relatively deep and narrow cavity, the other

 (9) Some minor differences in respect to the torsion angles are around **O(16) and O(19).**

Figure 1. Molecular structures of (a) 1.MeCN (1:2) and (b) $1-MeNO₂$ (1:1). A and B indicate the two faces of the host *(cf.* shaded surface). Heteroatoms involved in H bonds are specified by numbering for each complex.

(B) is similar to a hookrest with a relatively wide and low shielded hollow. For steric reasons A should he the face to bind spatially nondemanding guests, while B is prepared to accommodate a somewhat more voluminous species. Indeed, the MeCN and MeNO₂ guests which are rodshaped and Y-shaped molecules, respectively, are correspondingly distributed among A and B in the present complexes (see Figure la,b).

Concerning the disposable binding sites, the two faces are also different. Face A provides three oxygens [0(4), $O(10)$, and $O(16)$] being trigonally arranged and easily accessible for H bonds to the guest methyl (MeCN).¹⁰ Naturally, face B is supplied with the remaining four donor sites of the host including the pyridino N , $O(1)$, $O(13)$, and O(19). *All* are involved in H bonding to the guest methyl (MeNO,). Thus, face differentiation of **1** is also a result of acid-base relationship and electrostatic attraction. MeNO_2 , which is more acidic than MeCN $\left[pK_a(\text{MeNO}_2)\right]$ $= 10$, p K_a (MeCN) = 25],¹¹ interacts more strongly with the highly basic pyridino nitrogen and therefore turns to face B, whereas the less acidic hut more polar MeCN [d.c. $(MeCN) = 37.5, d.c.(MeNO₂) = 35.9$ ¹¹ turns to face A, containing the oxygens with highest charge density **[0(4)** and $O(10)$]. In other words, MeCN finds a more complimental binding site at face A and MeNO_2 at face B, or 1 shows chameleon behavior toward MeCN and MeNO₂.

There is another interesting question associated with the whereahout of the second MeCN molecule of the 1:2 **1-** MeCN complex. According to Figure la it is involved in a second-sphere relationship with a close contact between the N-terminus of $MeCN(1)$ and a methyl-H of $MeCN(2)$ [N(13S)-C(ZlS) 3.412 **A,** N(l3S)-H(23S) 2.368 A]. This mode of interaction possibly helps at H bonding of $MeCN(1).¹²$ The crystal packing (supplementary material) shows the MeCN(2) molecules located in intermolecular channels of approximate dimension 7×8.5 Å.¹³ By way of contrast, the directly hound MeCN(1) is taken up in the intramolecular cavity of 1.¹⁴

^{(1) (}a) Stryer, L. Biochemie, 2nd ed.; Vieweg: Wiesbaden, 1983. (b) Chapeville, F.; Haenni, A.-L. Chemical Recognition in Biology; Springer Verlag: Berlin, 1980.

^{(2) (}a) Cram, D. J. "Applications of Biochemical Systems in Organic Chemistry"; Jones, J. B., Sih, C. J., Perlman, D., Eds.; In *Technique8 of* **Chemistry; Weieaberger, A., Ed.; Wiley: New York, 1976; Vol 10, Part U, pp 81-73,** (b) **Hayward, R C. Chem.** *Soc. Re".* **19% 12,285-308.**

⁽³⁾ Van Staveren, C. J.; Aarts, M. L. J.; Grootenhuis, P. D. J.; van Eerden, J.; Harkema, S.; Reinhoudt, D. N. J. Am. Chem. Soc. 1986, 108, 5271–5276 $5271 - 5276$

^{(4) (}a) Weber, E. In Synthesis of Macrocycles: The Design of Selective Complexing Agents; Lzatt, R. M., Christensen, J. J., Eds.; Wiley: Wew **York, 1987; pp 337619. (b) Vaptle, F.; MIWer, W. M.; Watson, W. H.** *Top. Cum. Chem.* **1984,125,131-164.**

⁽⁵⁾ **(a) Weber, E.; Vögtle, F. Top. Curr. Chem. 1981. 98, 1–41. (b) Hiraoka, M. Crown Compounds**, Their Characteristics and Applications; **Ekevier: Amsterdam. 1982. (c) Cokel. G. W.; Koneniocuaki, S. H.** *Maerorvelic Pohether* **Svntheses: Sorinser Verlap: Berlin. 1982.**

Macrocyclic Polyether Syntheses; Springer Verlag: Berlin, 1982.

(6) In other cases, hosts coordinating at a single side are intended. See:

Meade, T. J.; Kwik, W.-L.; Herron, N.; Alcock, N. W.; Busch, D. H. J.

Am. Chem.

⁽⁷⁾ Weber. E.: Franken. .. **S.: Puff.** .. **H.: hdt. J.** *J.* **Chem. Soe.. Chem. Co&un. 1986,467-469.**

group *PI* **(No. 2).** Commun. 1986, 467-469.

(8) 1·MeCN (1:2) crystallizes in the triclinic space group $P\bar{1}$ (No. 2).

Cell dimensions: $a = 7.998$ (4) Å, $b = 9.749$ (3) Å, $c = 19.444$ (7) Å; $\alpha = 96.23$ (3)°, $\beta = 99.01$ (3)°, $\gamma = 96.47$ **g** cm⁻³, $R = 0.064$, 389 parameters refined with 4026 reflections with $\sigma(I)$ < 0.67(*I*). **(8) IMcCN (P2) crystallieas in the triclinic s** $\leq 0.67(I)$.

⁽¹⁰⁾ Distances are: C(11S)---O(4) = 3.462 Å, C(11S)--H(12S)---O(4) = 143.4°; C(11S)---O(10) = 3.315 Å, C(11S)--H(11S)---O(10) = 143.4°; C-(11S)---O(16) = 3.226 Å, C(11S)--H(13S)---O(16) = 152.9°.

^{. (11)} Weast, R. C. Handbook of Chemistry and Physics, 54th ed.; CRC: Cleveland, 1974.

⁽¹²⁾ For a somewhat similar situation, see: Weber, G.; Jones, P. G. Acta Crystallogr. Sect. C. Cryst. Struct. Commun. 1983, C39, 1577-1581.

⁽¹³⁾ Slow evaooration of the channel-enclosed MeCN seem8 to ha responsible for the low stability of the complex.

⁽¹⁴⁾ From that point of view hcluaion of MeCN(2) may be regarded *88* **a channel clathrate with the directly bund host-guest unit forming the host matrix.**

Hence, the structures presented here are unique, at least in two points. They are the first examples on the organic ligand sector where face differentiation of a host toward an uncharged molecular guest is definitively shown, and also first- and second-sphere coordination,¹⁵ or cavitate¹⁶ plus clathrate binding¹⁷ of the same guest species within the same crystal, to our knowledge, has not been documented before. Moreover, it should be mentioned that MeCN, just as MeNO_2 , causes problems with respect to the complexation of 18-crown-6.4

For other face differentiations it would be desirable to have more extensive cavities either at face A or B, or at both sides of l-type hosts. In this respect, we are going to substitute the phenylenes of 1 gradually for naphthylenes, which are more shielding groups.

Acknowledgment. We thank Prof. F. Stoddart (University of Sheffield) and Prof. *G.* R. Newkome (LSU, Baton Rouge) for helpful discussions. This work was supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie.

Registry No. 1.2MeCN, **104182-86-7.**

Supplementary Material Available: Tables of positional and thermal parameters (Tables I and 11), bond distances and bond angles involving non-hydrogen atoms (Tables I11 and IV), endocyclic torsion angles for the host macrocycle (Table V), and figures with different stereoscopic representations of the hostguest unit (Figures 2 and **3)** and of the crystal packing (Figure **4) (10** pages). Ordering information is given on any current masthead page. **A list** of obaerved and calculated structure factors is available directly from the author.

(17) Weber, **E.** "Molecular Inclusion and Molecular Recognition-Clathrates I" Topics *in Current Chemistry;* Springer Verlag: Berlin, **1987;** Vol. **140.**

(18) (a) Institut far Organieche Chemie. (b) Anorganisch-Chemisches Institut.

> Edwin Weber,*^{18a} Sybille Franken^{18b} Jochen Ahrendt,^{18a} Heinrich Puff^{18b}

Institut fur Organische Chemie und Biochemie and Anorganisch- Chemisches Institut der Universitat Bonn 0-5300 Bonn-1, FRG Received August 12, 1987

The Structure of Vinigrol, a Novel Diterpenoid with Antihypertensive and Platelet Aggregation-Inhibitory Activities

Summary: The structure of vinigrol (I), a novel diterpenoid isolated from a fungus as an antihypertensive and platelet aggregation-inhibiting substance, has been determined by using chemical derivatizations, spectroscopic measurements, and an X-ray crystal analysis.

Sir: Vinigrol (1) is a novel diterpenoid recently isolated from *Virgaria nigra* as an antihypertensive and platelet aggregation-inhibiting substance.^{1a} Herein we report the structure elucidation of this natural product on the basis of chemical and physical evidence and X-ray crystal analysis.

Vinigrol **(1)** was isolated as colorless prisms: $C_{20}H_{34}O_3$ (FDMS, m/z 323 (M⁺ + H). Anal. Calcd for $C_{20}H_{34}O_3$: C, 74.49; H, 10.63. Found: C, 74.20; H, 10.23; mp 108 "C; $[\alpha]_D$ -96.2° *(c* 1.05, CHCl₃). The ¹³C NMR spectrum $\overline{(CDCl_3)}$ of 1^2 revealed all the carbon signals which are assignable to a trisubstituted olefin (δ 128.5 (d), δ 136.5 (s)) and three alcohols (primary, secondary, and tertiary) (δ) 67.6 (t),³ 72.7 (d),³ 75.5 (s)), the remainder being 15 signals attributable to seven methines $(\delta 33.1 \text{ (d)}, 34.6 \text{ (d)}, 35.9)$ (d), 40.3 (d), 44.3 (d), 45.1 (d), 51.3 (d)), four methylenes (δ 27.3 (t), 28.6 (t), 28.9 (t), 29.7 (t)), and four methyls (δ 15.5 (91, 20.6 (91, 21.5 **(q),** 24.8 (9)).

Acetylation of 1 (Ac₂O/pyridine) gave diacetate 2 **(EIMS,** m/z 406 **(M⁺);** δ_H 2.10 **(s, 3 H)**, 2.04 **(s, 3 H)**, 4.61 $(AB q, J = 12 Hz, 2 H), 5.48 (s, 1 H).$ ⁴ Jones' oxidation of 1 (CrO3-HzSO4/HZO-acetne) gave ketone **3 as** a major product (EIMS, m/z 320 (M⁺); δ_H 6.89 (d, $J = 6.2$ Hz, 1 H), 4.31 *(8,* 2 H); 54%), together with minor products **4** (EIMS, m/z 320 (M⁺); δ_H 9.50 (s, 1 H), 7.01 (d, $J = 5.9$ Hz, 1 H), 4.63 (s, 1 H); 5%) and 5 (EIMS, m/z 318 (M⁺); δ_H 10.16 (s, 1 H), 7.81 (d, $J = 6.5$ Hz, 1 H); 5%). Since these chemical and spectroscopic methods were found to be impractical for structural determination of this unusual diterpenoid, we decided to submit crystals of 1 or its derivatives to X-ray crystal analysis.

The crystals of **5** were found to be optimum, which formed in the orthorhombic space group $P2_12_12_1$ with $a = 18.105$ (1) Å, $b = 10.355$ (1) Å, and $c = 9.296$ (1) Å; $V = 1739.5$ (2) Å³; $Z = 4$; $D_x = 1.22$ g cm⁻³. The structure was determined by the direct method (MULTAN 74) and successive block-diagonal least-squares and Fourier syntheses. Parameters were refined by using anisotropic temperature factors to $R = 0.050$ for 1644 independent

0022-3263/87/1952-5292\$01.50/0 © 1987 American Chemical Society

⁽¹⁵⁾ Cf.: Colquhoun, **H.** M.; Stoddart, **F.** J.; Williams, D. J. *Angew. Chem.* **1986,98,483-503;** *Angew. Chem., Int. Ed. Engl.* **1986,25,487-507. (16)** Cram, **D. J.** *Science (Washington, D.C.)* **1983,** *219,* **1177-1183.**

⁽¹⁾ (a) Ando, **T.;** Tsurumi, Y.; Ohata, N.; Uchida, I.; Yoshida, K.; Okuhara, M. *J. Antibiot.,* in press. **Ib)** Ando. T.: Yoshida. K.: Okuhara. M. *J. Antibiot.,* in press.

^{(2) &}lt;sup>1</sup>H NMR (CDCl₃) of 1: δ 5.81 (d, $J = 5.6$ Hz, 1 H), 4.25 (AB q, $J = 12$ Hz, 2 H), 4.20 (s, 1 H), 2.32 (d, $J = 5.6$ Hz, 1 H), 2.23 (d, $J = 3.6$ Hz, 1 H), 2.12 (m, 1 H), 1.96 (m, 1 H), 1.8-1.5 (m, 5 H), 1.4-1.0 (m **1.0-0.8** (m, **12 H).**

⁽³⁾ The signals at δ 128.5, 67.6, and 72.7 correspond to the proton signals at δ 5.81, 4.25, and 4.20 in the **'H NMR** spectrum of **1** (see ref 2).

signals at v 3.51, 4.25, and 4.20 in the 'H NWIR spectrum of 1 (see Fet 2).

(4) ¹H NMR (CDCl₃) of 2: δ 6.14 (d₁ J = 6 Hz, 1 H), 5.48 (s, 1 H), 4.65

(d₁ J = 12 Hz, 1 H), 4.57 (d₁ J = 12 Hz, 1 H), 2.44 (d₁ **(m, 3 H), 1.80** (m, **1 H), 1.65** (m, **1 H), 1.53-1.48** (m, **2 H), 1.40** (m, **1 H), 1.35 (m, 1 H), 1.3-1.0 (m, 4 H), 0.99** (d, J ⁼6.8 **Hz, 3 H), 0.98** (d, *J* = 6.8 Hz , 3 H), 0.95 (d, $J = 6.8 \text{ Hz}$, 3 H), 0.94 (d, $J = 6.8 \text{ Hz}$, 3 H).